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ABSTRACT

Two heuristics based on branch and bound (B&B) are developed to solve closed-loop material require-
ments planning (MRP) lot-sizing problems that have general product structures and variable costs. A
“look ahead method’’ (LAM) heuristic allows for variable production/purchasing costs and uses a
single-level B&B procedure to rapidly improve lower bound values; thus, LAM efficiently uses computer-
storage capacity and allows solution of larger problems. The “total average modification’” (TAM)
heuristic uses B&B, applied level by level, and modified setup and carrying costs to solve the variable
production/purchasing costs MRP lot-sizing problem. LAM and TAM are tested on problems and
compared to heuristics in the literature. TAM may be used to solve large MRP lot-sizing problems
encountered in practice.

Subject Areas: Heuristics, Inventory Management, Material Requirements Planning, and Production/
Operations Management.

INTRODUCTION

It is fairly well known that lot-sizing decisions in material requirements planning
(MRP) systems require the solution to a very large combinational problem, amen-
able to solution by heuristic methods. Many lot-sizing heuristics used on multilevel
product structures assume constant demand patterns (economic order quantity),
constant production/purchasing costs [17] [24] {3], or single-level product struc-
tures [29] [19]. However, the authors know of no heuristics developed for what
may be the most prevalent lot-sizing problem found in the manufacturing industry
today: the MRP multiperiod, multilevel, multicomponent, multiparent, variable
production/purchasing costs problem.

Many optimal and heuristic single-level lot-sizing techniques with determi-
nistic time varying demand have been presented and tested in the literature [1] [2]
[4] [5] [11] [13] [25] [29]. Quantity discounts have also been included as an exten-
sion to the single-level problem [14] [15] [26]). The single-level product structure,
however, rarely represents the complexity required when manufacturing products.
The use of a serial product structure (i.e., multilevel, single component, single
parent) or an assembly product structure (i.e., multilevel, multicomponent, single
parent) may not be appropriate in manufacturing either. The general product struc-
ture (i.e., multilevel, multicomponent, multiparent) used in this paper is often
required.

Recently, Gaither [9], Jacobs and Khumawala [12], and Veral and LaForge
[28] tested many single-level heuristics (i.e., lot for lot, economic order quantity,
periodic order quantity, least unit cost, least total cost, part period balancing, etc.)
in a multilevel product structure environment in comparison with the Wagner and
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Whitin (WW) algorithm [29]. Based on cost performance, the results identify WW
as generally superior. Many other studies testing single-level heuristics in a multi-
level product structure may be found in the literature [18] [21] [25]. However, studies
on heuristics designed especially for the multilevel lot-sizing problem in an MRP
environment are addressed by relatively few researchers.

McLaren and Whybark (MW) [17] specifically addressed the multilevel problem
and develop a heuristic that inflates the setup costs of parent items based only on
the items’ immediate component’s setup costs. The adjusted setup cost is used in
place of the criginal in the single-level, periodic order quantity (POQ) lot-sizing
procedure. Rehmani and Steinberg [24] extended MW’s research by modifying each
parent’s economic part period (EPP) calculation by each of their immediate
component’s EPP. They proposed and tested four modifications to an item’s EPP
and used them with the least total cost (LTC) single-level lot-sizing technique. Graves
[10] presented a multipass heuristic that continues to revise and improve the current
schedule in an iterative fashion. Graves’ procedure starts with a single-level WW
solution that is collapsed into other stages based on the current schedule. Recently,
Billington, McClain, and Thomas [3] presented a Lagrangian relaxation heuristic
method to solve a multilevel lot-sizing problem with a single bottleneck facility.

The use of closed-loop MRP systems [31] to plan and control manufacturing
processes allows the use of a general product structure model and requires that
solution heuristics make the most efficient component quantity and timing deci-
sions. Lot sizing in this research incorporates many conditions found in manu-
facturing, resulting in perhaps the most representative MRP lot-sizing problem of
those found in the literature. The heuristics presented in this paper are, however,
easy to implement because they follow standard MRP netting requirements and
planned order release calculations [19] when solving the MRP lot-sizing problem
with variable costs. Variable production/purchasing cost is the newest feature of
this general case, heuristic lot-sizing research. “‘All units’’ quantity discounts, where
all the units’ prices decline relative to increased purchase quantities once a price
break is reached, are available in the model to represent variable purchasing costs
{20] [30]. For those items produced in-house, variable production costs include
capacity constraints for an item during any one period. Once the normal produc-
tion limit is reached, increased per-unit variable production costs may be incurred
due to overtime or subcontracting costs.

An integer, piecewise-linear programming model that incorporates the above
MREP lot-sizing features can be found in Prentis and Khumawala [22]. Branch and
bound (B&B) (briefly reviewed in the following section) has been used to opti-
mally solve this problem using a path-dependent, lower-bound procedure where
the costs on new lot-sizing decisions are added to the preceding node’s lower bound
[22]. Two heuristics, the look ahead method (LAM) and total average modifica-
tion (TAM), are developed based on the B&B algorithm. LAM and TAM are tested
on those problems in the literature with “‘good”’ results.

THE LOOK AHEAD METHOD HEURISTIC

In spite of the B&B procedure’s efficiency, the number of nodes created in
B&B grows exponentially with problem size and becomes a limiting constraint. The
lower-bound value does not begin to approach the upper-bound value until many
nodes have been created. Most of these nodes never lead to an optimal solution
but are stored during the B&B process, thus taxing computer-storage capacity. For
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the MRP lot-sizing problem with variable production/purchasing costs, the largest
problems solved using B&B were comprised of five items over 12 periods, each
with different demand and cost patterns, and required a maximum of 180 minutes
of computer time [22].

The following example demonstrates and briefly reviews the logic of B&B and
serves as an introduction to the LAM heuristic procedure. The demand require-
ments for end items 1 and 2 are listed in the master production schedule (MPS)
(Table 1).

The bill of material (BOM) is for a multilevel, multicomponent, multiparent
general product structure problem (Figure 1). Item 1 is produced with 2 units of
component 3 and 1 unit of component 4. Item 2 is processed from 1 unit of compo-
nent 4. The branching strategy begins first with the lowest-numbered end item (i.e.,
item 1) and progresses sequentially to the highest-numbered item located at the
lowest level (level 2) in the BOM (i.e., 1 to 2 to 3 to 4). The inventory records file
(IRF) includes the setup and carrying costs for each item as listed below:

Setup costs Carrying costs
items 1, 2=3%45 items 1, 2=$2/period/unit
items 3, 4=$20 items 3, 4=$1/period/unit

During the B&B branching process the problem is continually partitioned into
reduced subsets which are identified as branches and associated nodes. A lower
bound is calculated for each new node after each partitioning. Subsets with a lower
bound higher than or equal to a known feasible solution are removed (i.e., pruned)
from the available solution set and discarded. The lower bound calculation at each
node uses information associated only with that node’s branching path (i.e., path-
dependent through the B&B tree). Figure 2 shows the B&B solution to this example
problem. Lot sizes are shown above the nodes for each item and order periods are
denoted after dashed lines. Nodes not leading to an optimal solution are pruned
(). Computations for a few intermediate and representative nodes, identified in
Figure 2, follow.

Table 1: Master production schedule.

Period
Product 1 2 3 4
Item 1 10 — 30 —
Item 2 — 40 — 5

Figure 1: Bill of material.

Lowest-Numbered ltem Level 1
Item 1 Item 2

@

Level 2 Highest-Numbered Item
Item 3 item 4
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The initial lower bound cost (IL) is first calculated for our example problem
to include one setup for each item. Therefore, the IL for node 0 is 130 (i.e.,
45+45+20+20). Branching and bounding begins with item 1 in period 1. The two
options are (1) to produce 10 units to meet demand in period 1, thus requiring one
more setup of item 1; or (2) to produce 40 units to meet demand for periods 1 and
3, thus requiring 30 units of item 1 to be carried two periods. Based on these deci-
sions, lower bound costs (L) at nodes 1 and 2 are L=130+45=175 and
L =130+ (30%2x2)=250, respectively. Each of the lower bound values are then
compared to a feasible solution’s upper bound value (a lot-for-lot solution to this
problem is 300). The node may be pruned if the lower bound is greater than or
equal to the upper bound value. Since the lower bounds for nodes 1 and 2 are less
than the upper bound, B&B continues along both B&B tree paths. The lower bound
value along the optimal path from node 1 to node 9 remains L =175. At node 12,
the lot size for item 2 in period 2 is 45, which requires carrying 5 units of item 2
for two periods. Therefore, node 12’s lower bound cost is L=175+(5x2x2)=195.
Continuing from node 12 to node 22, the lot size for item 3 is 80 units in period
1. The resulting lower bound value for node 22 is L=195+(60x 1 x2)=2315, which
is greater than the upper bound value and is therefore pruned (#). The optimal
planned order releases (POR) for each item in the example problem are shown in
Figure 3.

The LAM heuristic modifies the B&B procedure by using a B&B single-level
optimizing subroutine to increase the lower bound values faster. The following nota-
tions are used for LAM:

Opt i=Single-level B&B solution of item i using a selected POR.

L, =Lower bound cost at a node using B&B which is path-dependent

through the B&B tree.

1) = Set of all higher-numbered items solved for on a single-level basis using
POR along the path with the lowest bound when the item was first
addressed.

The lower bound cost calculation for LAM (L; ) at a node is now

L=L,+ X Opti for / it.
i€¢

When B&B is used, the next node selected is often a previously addressed item
that has been partially enumerated. What has been learned about the higher-
numbered items (e.g., items 2 and 3) is not taken into account when calculating
the lower bounds for lower-numbered items (e.g., item 1) (see Figure 2). If the
higher-numbered item’s B&B single-level solution (i.e., Opt i, which is a B&B solu-
tion for only one item’s requirements) is added to the B&B lower bound values,
then pruning can be enhanced. This is the central idea behind the development of
the LAM heuristic.

A B&B single-level optimizing subroutine allows for variable production/
purchasing costs and is used when each higher-numbered item is encountered. The
gross requirements for a component, associated with the branching path having
the least lower bound when this component first comes into solution, is employed
and solved optimally (using B&B) on a single-level basis (Opt /). Any time the lower
bound node selection drops back to a lower-numbered item, the lower bound cal-
culation adds the Opt i solutions of all higher-numbered items already encountered
and solved optimally on a single-level basis. Figure 2 shows a B&B solution for our
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Figure 2: Pruning the B&B tree.
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general product structure example problem. The B&B procedure generates a total
of 39 nodes for this example problem’s solution.

LAM begins by calculating the B&B single-level solution to end items 1 and
2, represented here by Opt 1 and Opt 2. Higher-numbered items’ B&B single-level
solutions (i.e., items 3 and 4) are calculated when the item is first addressed during
the B&B process. Node 18 has the lowest lower bound cost (L =195) along the B&B
path leading to item 3. Therefore, Opt 3 would be calculated using the B&B tree
path of PORs of 10 and 30 in periods 1 and 3 for item 1 and 45 in period 2 for
item 2. Item 2 is not a parent of item 3 so it would not be a factor in Opt 3’s solu-
tion; however, it could be. If node 2 (representing item 1) was the next node selected,
the lower bound value would include values of Opt 2+ Opt 3; consequently, the
resulting increased lower bound value might prune paths 2, 4, 6, 8, 10, 13, and
14 at node 2 rather than waiting until nodes 13 and 14 when using B&B. This LAM
heuristic will not guarantee optimality. However, LAM does provide ‘‘good”’ solu-
tions and reduces computer-storage space requirements for nodes when compared
to B&B.

The number of nodes created are reduced by eliminating those that are highly
unlikely to lead to an optimal solution. It is important to note that each B&B node’s
lower bound value (L,) is calculated on its hierarchical product structure relation-
ship (i.e., it is path-dependent through the B&B tree). The optimal single-level B&B
(Opt i) solution is used only when the branching strategy selects a lower-numbered
item from which to branch. Only those nodes with the highest lower bound values
are eliminated while maintaining the B&B lot-sizing procedure. This eliminates
excessive computer storage requirements and yet provides ‘‘good’’ solutions. The
number of nodes created when using the LAM heuristic grows exponentially with
problem size. Therefore, to solve industry-sized problems from the literature the
TAM heuristic (presented next) is required.

THE TOTAL AVERAGE MODIFICATION HEURISTIC

TAM is based on heuristics in the literature [6] [16] [17] [23] [24] as well as
on the B&B [22] solution technique. McLaren and Whybark [17] and McLaren
[16] developed a heuristic to be used with single-level procedures on the multilevel
lot-sizing problem. They adjusted the item’s setup cost by summing the time-
between-orders (TBO) ratio, multiplied by the component part’s setup cost. Their
procedure includes only the parent’s immediate components on the next lower level
in the BOM. Components after the next lower level are ignored when adjusting
the parent’s setup cost even though interaction of orders at these levels will affect
the optimal decision.

Instead of adjusting only the setup cost, Rehmani and Steinberg [24) modified
each item’s EPP. Of the four variations studied, the simple average modification
(SA) to the EPP calculation produced the best results; therefore, SA is used for
comparison purposes in this study. Blackburn and Millen [6] developed heuristics
for the assembly product structure (i.e., multilevel, multicomponent, single parent)
problem. They used level-by-level, single pass algorithms (i.e., WW [29], Silver-
Meal [27], part period balancing [19]) along with cost modifications in an attempt
to incorporate the interdependencies of items among levels. They suggested that
research be done on how to treat multiparent product structures. The solution of
the general product structure model which incorporates the work done in [6], [17],
and [24] is addressed next.
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The approaches in [17] and [24] modify each parent’s costs by the immediate
components’ costs on the next lower level in the BOM even though all lower level
components interact with that upper level parent item. However, Blackburn and
Millen [6] show that taking all components into account when calculating a parent’s
modified setup/ordering and echelon holding costs achieves better results than (1)
when no cost modifications are used, and (2) when only the immediate compo-
nents’ costs are incorporated.

The TAM heuristic is designed to recognize that all components throughout
the BOM affect a parent’s lot size [21). This is the interaction effect throughout
all levels in the product structure that must be accounted for when developing an
MRP lot-sizing heuristic. Therefore, TAM modifies a parent’s setup/ordering and
carrying costs using all of the item’s components rather than just the parent item’s
immediate components.

Product structures with a degree of commonality greater than one (see [7] and
[8)) will have multiple common components for a parent item. When modifying
a parent’s setup or carrying costs, a decision must be made as to how many times
multiple components should be incorporated when requiring more than one of the
same component. The unique multilevel component approach (i.e., each component
is included once, regardless of the number of each component required for a parent)
for TAM is based on the literature. Rehmani [23] tested multiple immediate com-
ponents for parent items when calculating the weighted sum modification (WS)
to the EPP calculation. Rehmani found that WS performs no better than the SA
(which uses unique immediate components) and that WS may exaggerate order sizes.
Therefore, the TAM heuristic takes into account all unique multilevel components
for a parent item at all levels in the product structure’s BOM. Thus, both the setup/
ordering and carrying costs are modified based on the respective costs of all unique
multilevel components. The following modified setup and carrying costs are used
in place of the original F; and C;, values for each item in the product structure:
Fil =1/Ri Fi+ E Fk
I k€A,

Cit’=1/Ri Cit+ E th >
k€ A;

where -

F; =the fixed cost of setting up production or ordering for item , regard-

less of quantity;

F;’ = modified setup/ordering cost;

C;;= cost of carrying one unit of item / in period #

C;,' = modified carrying cost;

A;= set of all unique components of item i

R;= the number of items in the set containing item i and A;.

TAM uses modified setup and carrying costs based on all unique multilevel
components throughout the BOM in conjunction with B&B applied level by level.
This solves the general product structure, variable production/purchasing costs
problem for each item and approximates the multilevel problem solution approach
of B&B. In addition, TAM solves the MRP lot-sizing problem with scheduled
receipts, on-hand inventory, independent demand at lower levels in the product
structure, as well as ‘‘all units’’ quantity discounts and item capacity constraints.
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The LAM and TAM heuristics are examined on a wide variety of test problems;
their computational results are presented in the next section.

COMPUTATIONAL RESULTS

The computational experiments consist of evaluating the LAM and TAM
heuristics by varying four factors. (1) Six demand patterns for independent demand
items are used (level, increasing, decreasing, concave, convex, and lumpy) for the
12-period and 52-period problems (Exhibit 1 is representative of the 52-period
problems). (2) Cost patterns are varied to evaluate procedures over different
economic circumstances. Setup costs are varied throughout the product structure
levels because setup costs for final assembly may be less than when fabricating
components [22] [23]. (3) The number of product structure levels ranges from three
to five levels. (4) Four degrees of commonality index (no, low, medium, high),
as defined by Collier [7] [8] for the product structure design, are used. The number
of items ranges from 5 to 62.

Exhibit 1: Demand patterns, 52 periods (adapted from Rehmani [23]).

Increasing diiar)=10+2k, i=1 to 4; k=0 to 12.
Decreasing diirak)=34-2k, i=1 to 4; k=0 to 12.
Concave di=8+1i, i=11t0 27; dy=62—k, k=28 to 52.
Convex di=36—i, i=1 10 27; dy=k—18, k=28 to 52.
Level di=22, i=1to 52.

Lumpy ( 40 for i=35, 49;

50 for i=12, 41, 45;

60 for i=1, 19, 40;

70 for i=7, 15, 51;

di= § 80 fori=2931;

84 for i=36;

90 for i=24,27;

100 for i=32;

\ 0 elsewhere, i=1 to 52.

Average demand per period (d)=22

To solve the test problems, two FORTRAN 77 computer programs—one for
LAM and the other for TAM—were written. The TAM heuristic is tested on the
52-period problems and compared to the following methods: (1) Wagner and Whitin
(WW) [29], (2) McLaren and Whybark (MW) [17], and (3) Rehmani and Steinberg
(RS) [24]. The percent savings of inventory costs for the various procedures are
reported.

A cost index (CI) is used to facilitate comparisons of lot-sizing methods and
results. The CI for the 12-period problems is based on B&B [22] because of the
variable production/purchasing costs of these test problems. To prevent the
common total production/purchasing costs from overwhelming the 12-period
problem percentage results, these common costs have been removed from the TAM,
LAM, and B&B solution values prior to calculating percentages. Thus, the most
stringent comparison of TAM’s effectiveness is achieved by basing percentages only
on the costs presently under the production manager’s control (i.e., setup/ordering,
carrying, ‘‘all units’’ quantity discounts, and item capacity constraints). To calcu-
late the 12-period problem’s cost indices, the following formula is used:
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_ Technique’s cost
B&B cost

Cl x 100.

For the 52-period problems, the cost indices are based on WW (for a represen-
tative comparison with other techniques in the literature) and is found by:

_ Technique’s total cost
WW total cost

CI x100.

The results of the 12- and 52-period test problems from the literature follow.

The 12-period problems have a general product structure, ‘‘all units’’ quan-
tity discounts, and item capacity constraints [22]. Table 2 presents 12 total
cost results for each technique tested (i.e., B&B, LAM, and TAM). LAM achieved
an optimal solution to the general product structure model with variable production/
purchasing costs in every case. When compared with B&B for number of nodes
used, LAM saved an average of 25 percent. Reduced node creation by LAM allows
efficient use of computer storage capacity; thus, larger problems may now be
solved. TAM gave solutions that cost, on average, only 3 percent more than the
B&B solutions.

The large 52-period demand problems, with up to 62 items and five product
structure levels, are taken from Rehmani [23]. Results from a total of 48 problems
are reported for the TAM, RS, and MW techniques. These MRP lot-sizing prob-
lems incorporate the general product structure. Production/purchasing costs for
individual items are zero (i.e., no ‘‘all units’’ quantity discounts or item capacity
constraints are included in these test problems) to make a fair comparison to the
less versatile multilevel heuristic techniques found in the literature (i.e., [17], [24],
and [29]). The TAM heuristic proves superior on these problems compared to all
other heuristics tested (Tables 3 through 5). Even without the variable costs
complexity, the TAM heuristic saves approximately 18 percent when compared to
WW when applied level by level. TAM also gives approximately an 8 percent cost
savings when compared to RS or MW,

CONCLUSIONS

This research addresses the MRP lot-sizing problem in a manufacturing envi-
ronment and develops heuristics that show good results. The look ahead method
(LLAM) and total average modification (TAM) heuristics are developed based on
a variable production/purchasing costs MRP lot-sizing model and the branch and
bound (B&B) solution procedure. The two heuristics, LAM and TAM, are tested
for their computational efficiency compared to existing methods found in the current
literature. On the 12-period problems tested, LAM proved optimal 100 percent of
the time while reducing computer storage requirements by saving an average of
25 percent on the number of B&B nodes created. TAM averaged only 3 percent
above optimal costs.

TAM was developed for use on larger (e.g., 52-period) problems. On the 52-
period problems tested, the TAM heuristic averaged an 8 percent lower cost than
the McLaren and Whybark (MW) [17] or Rehmani and Steinberg (RS) [24] heuristics
and an 18 percent lower cost when compared to the Wagner and Whitin (WW)
algorithm [29]. TAM has been tested using problems in the literature that have
a wide variety of demand patterns, cost values, product structure commonalities,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissiony\w\w.manaraa.com



448 Decision Sciences [Vol. 20

Table 2: Cost indices (12 periods) for B&B, LAM, and TAM.

Branch & Bound Look Ahead Method Total Average Modification

Cost Indices (B&B)! (LAM) (TAM)
Example A

Average 100 100 101

Range * 100-100 100-103
Example B

Average 100 100 104

Range * 100-100 100-110

IFrom Prentis and Khumawala [22].
*Cost index based on B&B.

Table 3: 52-period results—Four levels.

Total Average

Wagner and Rehmani and McLaren and Modification

Cost Indices Whitin [29] Steinberg [24] Whybark [17] (TAM)
No commonality

Average 100 90 88 85

Range * 8793 86-92 84-86
Low commonality

Average 100 94 9% 84

Range . 91-102 90-103 83-86
Medium commonality

Average 100 94 87 84

Range . 81-108 81-92 80-91
High commonality

Average 100 97 104 84

Range * 90-107 91-108 79-88

*Cost index based on Wagner and Whitin [29].

Table 4: 52-period results—Five levels.

Total Average

Wagner and Rehmani and McLaren and Modification

Cost Indices Whitin [29] Steinberg (24] Whybark [17] (TAM)
No commonality

Average 100 85 84 82

Range . 84-86 82-86 81-83
Low commonality

Average 100 87 89 81

Range . 85-88 86-92 79-85
Medium commonality

Average 100 86 83 77

Range * 79-92 79-86 75-80
High commonality

Average 100 87 93 81

Range * 83-92 90-96 78-84

*Cost index based on Wagner and Whitin [29].

Table 5: Average 52-period results.

Total Average

Wagner and Rehmani and McLaren and Modification
Cost Indices Whitin [29] Steinberg [24] Whybark [17] (TAM)
Grand average of
cost indices 100 90 90 82

*Cost index based on Wagner and Whitin [29)].
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and product structure levels. The cost savings produced by TAM for the 52-period
problems were always superior to WW and were superior or equal to RS and MW
in 47 out of the 48 test problems. TAM has been consistently and significantly
superior to WW, MW, and RS on the general product structure, zero production/
purchasing costs problem. More importantly, TAM is able to accommodate variable
production/purchasing costs while other approaches in the reviewed literature
cannot. TAM may allow the general product structure, variable production/
purchasing costs MRP lot-sizing problems encountered in manufacturing to be
solved with ‘‘good”’ results. [Received: March 4, 1987. Accepted: June 2, 1988.]
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